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Abstract—This work proposes a machine learning approach
for cell characterization of logic gates. Traditional electrical
simulation-based characterization faces challenges related to
foundry secrecy and runtime. The proposed framework ad-
dresses these challenges by utilizing ML models to estimate
power consumption and propagation times. The experiments
demonstrate the potential of the framework to predict different
logic gate functions in different technology models, showing
the feature extraction differences for bulk CMOS and FinFET
devices. Results demonstrate the effectiveness of the Decision
Tree algorithm in fast and accurately predicting cell behavior,
with inference times almost a thousand times faster than the
traditional electrical simulation and coefficient of determination
superior to 95%.

Index Terms—Cell characterization, FinFET devices, Machine
Learning

I. INTRODUCTION

Cell characterization is a time consuming task however
fundamental in the availability of cell libraries for standard
cell synthesis. Traditional cell characterization tools rely on
electrical simulations, such as from SPICE simulators, to
evaluate the performance, power and efficiency of a given
circuit designed in a specific technology, described through
a compact model that abstracts the electrical behavior of
a transistor. As technology has advanced to the nanoscale,
the parameters affecting circuit operation have increased con-
siderably, expanding the number of cases to be evaluated
for a complete cell characterization combining the effects
of process variability, temperature, different voltage levels
with traditional characterization corners. Moreover, there is
a foundry reluctance to share transistor model cards limiting
the early evaluation of technologies to choose which device
is suitable for a specific circuit, for example, if FinFET is a
good alternative compared to traditional CMOS [1].

The electrical characterization of FinFET circuits is very
similar with planar devices. The key differences from planar
devices are 1) the fin width (W ) and fin length (L) parameters
are fixed according to the technology adopted, and the sizing
of FinFETs is given by the number of fins, and, 2) the main
sources of process variability. In bulk CMOS devices, the
random dopant fluctuation was considered the most critical
source. As the channel of FinFETs is lightly doped, these
devices suffer less from dopant-induced variations. However,

FinFETs main variability source is due to the work-function
fluctuation (WFF) derived from the metal gate granularity [2].

In recent years, we have observed new approaches exploring
machine-learning (ML) for modeling emerging technologies
behavior, mainly to define: 1) transistor models that learn and
reproduce the I-V curve (electrical response) of a transistor
[3] [4], or 2) predict the effects process variability on the
IDS-VGS characteristics to reduce the conventional TCAD
simulation running time [5] [6]. However, to the best of our
knowledge, few works look at the problem at the gate level.
In [7], it is proposed a ML approach that quickly generates
cell libraries performing automatic parameter optimization on
transistor parameters. In [8], we evaluate machine learning
regression algorithms as an alternative to exhaustive electrical
simulation in cell characterization, presenting a first case
study for an Inverter using 16 nm bulk CMOS technology.
The preliminary evaluation shows the advances of adopt a
decision tree model concerning accuracy, and fast time to
estimate the cell behavior. In this paper, we proposed a generic
machine learning-based framework for predicting power and
propagation times. This environment can preserve the foundry
secrecy about the device models, and the ML model acts as a
light and suitable black-box model. The evaluation shows the
framework training and validation considering bulk CMOS and
FinFET based standard cells.

II. PROPOSED FRAMEWORK

This work proposes a framework for characterizing cells
from a standard cell library adopting the SPICE netlists.
This workflow was designed so it can be generalized to
work with other circuits and technologies. Fig. 1 summarizes
the training process. The electrical characterization target the
energy and propagation time prediction, considering process
variability effects. The proposed flow is used to characterize
cells adopting bulk CMOS and FinFET device models. The
input variables considered were voltage, temperature, output
capacitance, number of fins and work-function fluctuation. The
predicted variables are the energy and all the propagation
times TpHL (propagation time high-to-low, i.e., the fall delay)
and TpLH (propagation time low-to-high, i.e., the rising delay)
for the logic functions under evaluation. Thus, the process is
divided into five main steps, starting with the electrical simu-
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Fig. 1. Training flow of the Proposed Framework

lations to the data set generation followed by the treatment of
the target variables, performing the normalization, and also the
separation of the data set into training, validation, and testing
sets for the training of the evaluated regression algorithms.
Stage four contemplates the development and adjustment of
the considered algorithms. Finally, step five performs the
analysis of the algorithms.

To accurately predict the logic cell performance by the
regression models, the data set should include samples of the
cell under evaluation under various conditions and affected
by process variations. The samples are generated by electrical
simulations with Cadence’s Spectre observing the energy and
all propagation time arches to define the delay of the circuits.
These variables are influenced by several parameters of the
configuration of the circuit depending on the device model
adopted, such as the number of fins, output capacitance,
temperature, and operating voltage. Also, variability effects
impact these variables depending on the parameters adopted.
The first step was to define clearly which input variables are
relevant for the output values being modeled. This experiment
adopts the 32 nm bulk CMOS model [9] and the 7 nm
ASAP FinFET model [10]. The machine learning models
are evaluated individually for each of the device model. We
define for both device models evaluated the input variables
of temperature, voltage, output capacitance. For bulk CMOS
devices, we define also the threshold voltage for NMOS and
PMOS devices by the parameter V th0 in the device model,
the channel length, the width of PMOS devices, and the width
of NMOS devices. For FinFET devices, we define the number
of fins and the work-function fluctuation by the NFET and
PFET Phig model parameter. The variability of the process
is simulated using the Monte Carlo method [2]. The input
variable values were predefined, following these range of
values:

• Temperature (oC): −25, 0, 25, 50, 75, and 100
• Voltage (V): 0.6, 0.7, 0.8, and 0.9
• Output Capacitance (f): 1, 4, 8, and 16
• NMOS Vth0: gaussian distribution with mean 0.5088,

3σ, and 10% deviation
• PMOS Vth0: gaussian distribution with mean −0.450,

3σ, and 10% deviation
• PMOS Width (nm): 70, 140, 280, 350, and 420

• NMOS Width (nm): 70, and 140
• CMOS channel Length (nm): 20, 32, and 40
• FinFET number of fins: 1, 2, 3, 4, and 5
• NFET work-function (Phig): gaussian distribution with

mean 4.372, 3σ, and 3% deviation
• PFET work-function (Phig): gaussian distribution with

mean 4.8108, 3σ and 3% deviation
To evaluate the proposed flow and identify the best regres-

sion algorithm, we choose two basic logic gates: the Inverter
and the NAND2 gate complementary network topologies.
In the end, more than 100 transient simulations of 20 ns
are executed for FinFET and 1000 transient simulations of
20 ns are executed for CMOS, obtaining a total of 96,000
for FinFET and 852,480 observations for CMOS. However,
the data processing step removes outliers values that would
confound the model results. After that, the final number of
observations stood at 91,134 cases for FinFET and 731,705
for CMOS. It should be noted that these outlier values may
occur due to internal errors in the electrical model used by the
simulator considering edge values in the variables.

Before training the algorithms, it was necessary to resize
each variable, because, in addition to some values being
very small, some algorithms (such as the Support Vector
Regression) are sensitive to different scales. For this rescaling,
the method known as normalization was used, which scales the
data to the range [0,1].

We evaluate four machine learning models for each out-
put variable considering the regression algorithms Multiple
Linear Regression (MLR), Support Vector Regression (SVR),
Decision Trees (DT), and Random Forest (RF), totaling 64
models trained. We opt to keep the same algorithms from the
previous evaluation for 16 nm bulk CMOS devices presented
in [8]. Copies of the data sets were created and then the model
selection module of sci-kit learn [11] was used to divide the
data set between the training (50%), validation (25%) and test
(25%) groups.

The tools used to manipulate, visualize, clean, train and
test the data were Jupyter Notebooks and the python language
libraries sklearn, pandas, NumPy, matplotlib, and seaborn.
All algorithms were trained using cross-validation with 10
folds, so that the algorithm makes more general predictions
and avoids overfit or bias in the data that was fed during its



training. For this, cross-validation uses the training set and
the validation set to first evaluate how the model is behaving
in the 10 folds of these subsets. Furthermore, in this process,
several copies of the model being trained are created and its
hyperparameters are varied to determine which is the best
model with the best configuration of these hyperparameters.
For both the Decision Tree and the Random Forest, Depth
is the maximum depth each tree will have. The Random
Forest # est. values are how many estimators, that is, how
many trees will be created for the model. The hyperparam-
eters are configured in the cross-validation to evaluate DT
Depth values of 1, 2, 3, 4, 5, 6, 8, 10, 25, 50. For RF, the Depth
values were the same and the number of estimators were
5, 25, 50, 75, 100, 150. The SVR models were not included in
the cross-validation because their training proved to be very
time-extensive.We decided to use the default hyperparameter
values: C = 1 and Gamma = 1/(Nfeatures×V arX). At the
end of cross validation, the values from Table I were obtained.

In Table I, we observe a reduction in the complexity of the
models for FinFET technology compared to the models for
bulk CMOS technology. The bulk CMOS models use higher
values of maximum depth for random forest estimators, which
means these models need to perform more tests due to the
larger number of input features in the bulk CMOS data set. In
contrast, there is a reduction in dimensionality for the FinFET
data set, requiring fewer tests.

TABLE I
CROSS-VALIDATION RESULTS

Model Gate Variable RF DT
Depth # est. Depth

32 nm
INV Tp HL 5 25 5

Tp LH and Energy 10 150 10

NAND Tp HL 5 100 5
Tp LH and Energy 5 150 5

7nm
INV

Tp HL 4 50 4
Tp LH 4 75 4
Energy 8 50 8

NAND All Tp 4 50 5
Energy 2 50 2

III. EVALUATION OF THE REGRESSION MODELS

The evaluation metrics are presented in Table II and Table
III. The best models for the Inverter were tree-based models,
with RF achieving the highest R² score. The worst algorithm
was MLR due to its linear nature, which fails to learn from
data of varying complexity. SVR performed best in terms of
R² score for energy, while it fell below 85% for delay. The
same behavior was observed for the NAND2, where RF and
DT algorithms had the highest R² scores for both delay and
energy. MLR remained the worst model, followed by SVR.
The only exception was found in the performance metrics
for the falling delays (TpHL A and TpHL B), where SVR
had a worse performance than MLR, with R² scores of 53%
and 31%, respectively. It is worth noting that similar metrics
for rising and falling delays of each input of the gate varied
only from the third decimal place. Thus, tree-based algorithms

showed the best performance across evaluation metrics, with
a very small difference between DT and RF.

For the FinFET model, the Inverter also showed the best
predictions using tree-based models, with RF and DT achiev-
ing R² scores of 97% and 94% for rising and falling delays.
The poorest performer for the Inverter’s delays was MLR,
scoring below 73%. However, it is worth noting that SVR
exhibited better performance for the 7 nm FinFET technology
compared to the 32 nm bulk CMOS. The same pattern did
not hold for energy, as SVR had worse performance (R² =
47%) than MLR (R² = 59%) for the Inverter. The best models
for energy continued to be tree-based methods, with RF and
DT showing higher differences now, with R² scores of 98%
and 95% respectively. For the NAND gate, the tree-based
models outperformed the others once again, with delays scores
above 90%. There was more variation among the delay types
in the tree-based models, but not as consistent as MLR and
SVR. Overall, the TpLH A and TpHL B delays had worse
predictions, with R² scores of 95% and 97% respectively. In
terms of energy, the R² scores ranked as follows in ascending
order: 97.7%, 97.8%, 99.7%, and 99.8%, respectively for SVR,
MLR, DT, and RF. Thus, tree-based models remained the best
performers, with RF having a slightly more significant R² value
than DT. Therefore, it is evident that for both technologies,
the conclusion regarding the models and their performances
remains the same, with RF being the best-performing model
in terms of overall r2-score, followed by DT.

Tree-based models experienced a slight decrease in perfor-
mance for both gates when transitioning to FinFET compared
to CMOS, although both RF and DT remained above 90%
and remained the best option among SVR and MLR models
for all variables. This reinforces the idea that was discussed
previously regarding the cross-validation results, that showed
that we had simpler models for the 7 nm FinFET technol-
ogy, which was a direct consequence of the dimensionality
reduction caused by the lower number input features when
compared to the 32 nm bulk CMOS data set. Therefore, with
a simpler data set for FinFET, the tree-based models have few
tests to realize so to reach a prediction. It is not enough for the
model to be low in error, but also fast if we want to propose
a method that is better than exhaustive simulation methods.
To further deepen the discussion, Table IV shows the different
values for the inference time for each model and the Spectre
simulation (Sim.). The the most time-consuming model (RF)
take less than 10% of the simulation time to predict the values.
We can also see that DT has a smaller inference time than RF.
Therefore, even though RF has a slight better performance, DT
has a faster inference time and since its performance for all
target variables is not so different from RF, DT is the best
model to predict electrical behavior from simulation data for
the logic gates NAND and NOT.

IV. CONCLUSION

The Decision Tree proved to be the fastest and as high
in the R² score as the Random Forest, therefore being the
best algorithm for this work. There was a slight decrease



TABLE II
EVALUATION OF THE REGRESSION MODELS ON THE PREDICTION OF PROPAGATION TIMES AND ENERGY FOR 32 NM BULK CMOS

Gate Variable
32 nm bulk CMOS

MLR SVR DT RF
RMSE R² RMSE R² RMSE R² RMSE R²

INV
Tp HL 0.0956 0.595 0.0599 0.8465 0.0038 0.9996 0.0032 0.9997
Tp LH 0.0822 0.7311 0.0545 0.882 0.0035 0.9995 0.0028 0.9996
Energy 0.1778 0.4732 0.0569 0.9327 0.0135 0.9969 0.0103 0.9983

NAND2

Tp LH A 0.0483 0.5893 0.0431 0.673 0.0012 0.9997 0.0009 0.9998
Tp HL A 0.0396 0.5338 0.0480 0.3128 0.0015 0.9993 0.0012 0.9996
Tp LH B 0.0472 0.5928 0.0442 0.6425 0.0015 0.9996 0.0011 0.9998
Tp HL B 0.0396 0.5363 0.0482 0.3127 0.0017 0.9991 0.0012 0.9996

Energy 0.0354 0.973 0.0351 0.9734 0.0033 0.9997 0.0022 0.9998

TABLE III
EVALUATION OF THE REGRESSION MODELS ON THE PREDICTION OF PROPAGATION TIMES AND ENERGY FOR 7 NM FINFET

Gate Variable
7 nm FinFET

MLR SVR DT RF
RMSE R² RMSE R² RMSE R² RMSE R²

INV
Tp HL 0.0793 0.7291 0.0441 0.9162 0.0259 0.9711 0.0254 0.9722
Tp LH 0.0615 0.7064 0.0412 0.8683 0.0272 0.9425 0.0268 0.9443
Energy 0.0431 0.5951 0.0493 0.472 0.0147 0.9529 0.0096 0.9798

NAND2

Tp LH A 0.0611 0.7132 0.0412 0.8695 0.019 0.9721 0.0184 0.9739
Tp HL A 0.0629 0.7153 0.0418 0.8745 0.0020 0.9997 0.0012 0.9999
Tp LH B 0.0610 0.7134 0.0412 0.8695 0.0021 0.9996 0.0015 0.9998
Tp HL B 0.0629 0.7153 0.0417 0.8748 0.0263 0.9503 0.0257 0.9527

Energy 0.0383 0.9783 0.0395 0.9769 0.0129 0.9975 0.0128 0.9976

TABLE IV
SIMULATION TIME AND INFERENCE TIME (MS)

Model Gate Sim. MLR SVR DT RF

32 nm INV 217.0 0.5 0.4 0.4 17.2
NAND2 248.0 0.4 0.5 0.4 27.1

7 nm INV 258.0 0.5 0.4 0.4 17.2
NAND2 300.0 0.6 0.8 0.5 29.5

in performance on the FinFET data set, since it had less
features than the CMOS data set. The direct consequence of
this complexity reduction is reflected in the quantitative results
expressed by the models scores. It can be noticed that the
R² value is relatively lower for the FinFET gates, although
still high and accurate. In addition to the lower number of
input features, there is also a trade-off between bias and
variance because less complex models have lower bias and
better generalization of data. Therefore, to achieve similar
values to the CMOS models, it is necessary to add more
information to the data set so that the algorithms can learn
to make equally precise predictions. In future work, feature
extraction will be explored by feeding the positioning/layout
of the logic gate transistors into the models to compensate for
the lack of information present in the other CMOS models.
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